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On the other hand, experimental data are usually evaluated X
N

under the form of mass-averaged quantities, particularly with &Ei

regard to the overall eneryy balance and efficiency estima- £§s

tions. The transition between these two sets of guantities %Sfi
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is usually taken into account by introducing an averaged ;:v}
aerodynamic blockage factor in addition to the blade blockage iﬁ?
factor resulting from the density averaged quantities. %@3
The present analysis provides a rigorous derivation for 35;5

the momentum averaged flow quantities and shows that some iii;
strong assumptions on the nature of the non-axisymmetric flow 5232
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components are necessary in order to justify the current ﬁ&:g
T

practice of introduction of aerodynamic blockage.
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7

~
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INTRODUCTION

Classical through-flow analysis models, as applied in
aerodynamic design systems of turbomachine;y are generally
based on density weighted averaged quantities (reducing to
area averages in incompresSible flows), Smith (1966), Hirsch
and Warzee (1976), (1979); Jennions and Stow -(1984). This
formulation leads to the introduction of additional “inter-
action” terms, having the same structure as the turbulent
Reynolds stress, but arising from the non-axisymmetry of the
flow and'contributing to the averaged radial equilibrium.
These interaction terms have to be evaluated explicitly in
quasi-three dimensional modifications of turbomachinery flows
whereby iterative computations of through-flows (S2 surfaces)
and axisymmetric blade to blade (Sl surfaces) flows are per-
formed, with appropriate data being transmitted from one family
to the other family of surfaces, Hirsch and Warzee (1979),
Jennions and Stow (1985).

An alternative to the explicit evaluation of the inter-
action terms as describing the effects of the non-axisymmetry
on the averaged flow, is to introduce instead, an aerodynamic
blockage factor, based on mass flow considerations, in addition
to the blade blockage resulting from the density weighted
averaging. This approach is followed by Calvert and Ginder

(1985) in order to define a consistent quasi-3D interactive
procedure. These authors rightly point out, that their aero-
dynamic blockage factor should contain the same information

on the non-axisymmetry of the flow as the interaction terms,
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and that its use in the continuity equation replaces the inter- ighﬁ
i

BARARL

action terms in the radial equilibrium momentum equation. As ;F{jﬁ
r‘E\’:'f;\

a consequence of this, Calvert and Ginder define a mass-averaged Fff-q
g

through-flow instead of the density weighted area averaged flow {b}j
. P A

. N

considered by the previously mentioned authors. 3%5?

v

Earlier, both present authors had separately stressed the
importance of the introduction of an. aerodynamic blockage in
through-flow evaluation methods, Hirsch & Denton (198l), Dring
{(1984). More particularly, this last reference proposes a
guantitative definition of blockage as the ratio between mass
averaged and area-averaged axial velocity components. Based
én the extensive data base for single and multistage axial
compressors obtained in the last years at United Technology
by the second author and his coworkers, Dring et al. (1979),
(1982), (1983), Wagner et al. (1983), (1984a), (1984b), quan-
titative evaluations of the blockage factor were made possible,
showing its importance particularly near the end walls. This
has been confirmed more recently by Dring and Joslyn (1985),
who showed that both the level and spanwise distribution of
aerodynamic blockage are important and have a strong impact
on the computed flow field at the outlet of blade rows. In
this latter analysis the computed quantities were also con-

sidered as mass averaged quantities.

The debate between the two families of averaged gquantities
is central to the validation of through-flow models. On one

hand, coherent through-flow models can be defined for

A > . .
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density-area averaged quantities, but on the other hand
physical arguments and the strong connection between mass
averaged quantities, like stagnation pressure, total energy

and machine efficiency, are essential to the correct estimation
of the energy exchange within the turbomachinery blade row.

The present report aimé at the derivation of a consistent
through-flow model for mass, or more precisely, momentum
averaged flow variables . A consistent model can be
obtained, at the cost of six different blockage coeffi-
cients, depending on which components of the momentum flux
are to be considered.

As will be shown, if the strong assumption is made of the
equality of all the blockage coefficients, then a simplified
model is obtained, which entirely justifies the semi-intuitive
approaches followed by Calvert and Ginder (1985) and Dring
and Joslyn (1985).

Comparison with experimental data allows an evaluation of
the limits of validity of this assumption and guidelines are
presented for the relation of the aerodynamic blockage factors

with loss coefficients in order to enable its introduction in

.

design systems.

Section one will present the recently derived averaged
form of the conservation equations in vector form, from which
different formulations can be obtained.

Section two will discuss the important energy conservation
equation and the impact various definitioné might have on a

through-flow analysis model.
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The momentum averaged equations are derived in section

b
.'

three and the influence of various blockage ccefficients is

investigated. Do

1. DEFINITION OF PASSAGE AVERAGED FLOW EQUATIONS
All flow equations are averaged over the blade passage,
defined as the region between the suction surface 9§ = es

and the pressure surface of the next blade, 9 = ep, figure

1.1. The area average of an arbitrary quantity is defined as

A = =5 | aads (1.1)

With the introduction of the blade thickness,d,in the

tangential direction, and the blade pitch,s, one can write

A as
p— l s
A = 5 f Ade (1.2)
N P
where
d
b = 1 - S (1.3) ’

AV M NN
LR S

LA A A

and N is the number of blades.

-y
-..0'.- 7

This averaging procedure is applied to all the conservat n
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equations (mass, momentum and energy) and in order to handle
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compressibility effects a density weighted passage average
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is defined, Hirsch and Warzee (1979), by
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The deviations from axisymmetry are defined by A' and A"

ey
D
A'%f.,n‘J

L]

according to

Y ‘.

A = A+A' = A+ A" (1.5)

N
-
[ ]

2l

e

with %ﬁi

A' = pA" = 0 (1.6)

~

(a) instead of A,

In the following we will use the notation A

ir. urder to distinguish those quantities from corresponding

mass-averaged values A(m).

l.1 Turbomachinery Flow Model

It is important, in an attempt to assess the validity of

different assumptions on through-flow quantities, to keep in

S e
|

mind the approximations at the basis of the flow models ?E

generally used in turbomachinery. g\.-
The essential approximation is expressed by a :EE%

distributed loss model, Hirsch (198S), in which the shear i{fﬂ

"2
DL
Wt

stresses are replaced by a loss (entropy) generating friction

force ff, considered as a distributed force, defined by the
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total pressure loss coefficients.

in the relative system

> -
%O—+v(ow) = 0

-+ > hed - -+

3pW) 4 gow @ w) = =Tp - 20(w xw)

3 (pI) _ 9dp
Y + V(pwI) = 3
3 - ->
w
5?(05) + V(pws) = T P Fe

”

V"'

W - - > - - -
et A\ = w + u = W + wuwxr
».h-.'

A

(SR

for a steady rotation of angular velocity -

The enthalpy,I,is defined by
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Similarly, the energy and
entropy equations are simplified by the assumption that the
shear stress work is exactly balanced by the heat conduction

effects, leading to the following set of equations, written

- -

2
pw r + ch

(1.7)

. K . . > ‘
In these equations, written in conservative form, w is the

relative velocity related to the absolute velocity v by

(1.8)

(1.10)
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An alternate formulation is provided by Crocco's form for

the momentum equation, where the pressure term is eliminated

by application of the entropy relation
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coupled to the non-conservative forms for the energy and
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1.2 Passage Averaged Egquations
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coordinate system (m,n,9), figure 1-2, where n is normal to

the meridional streamline, m.

Expressing mass conservation for the streamtube of thick-

ness Bl' one has, instead of equation (1.20), since wo = 0

and assuming that the shape of the meridional streamline is

nearly axisymmetric,

d_ (T =

Eﬁ(pwmA) = 0 (1.23)
where A = ZﬂrbBl, and for the'energy equation

L owia = o0 (1.24)

ampm = . . .

In the above expressions, no decision has been made with
regard to the nature of the averaged variables to be considered.
The current option to be found in the literature is the

density-weighted, area average, according to the definition

(1.4), Hirsch and Warzee (1979), Jennions and Stow (1984).
Writing the density weighted, area averaged quantities with
a superscript (a), instead of the tilda in equation (1.4),

one obtains the following consistent through-flow model.

—=(a)

’%}-(Ebrv?lfa’) +g—z(3brwz )y = 0
C T (W'D ®© w@pr) = -bip + sbF + 9(T 5 p) (1.25)
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In equations (1.25), the term F is the sum of all the forces,

- ' ->
F o= w’f - 2p(wxw@) &+ Foo+ £ (1.26)
and the additional stress term ?(S) represents the sum of the

_"interaction” terms expressed as the gradient of a "secondary”

stress factor

T - L @ W (1.27)

The energy equation shows that the averaged total energy,

T(3) | gefined by

_ _ +2(a) =2
Ifa) _ g !_7__ - %T (1.28)

is not constant along a density area averaged streamline.

This has important consequences on the consistency of through-

flow models and will be discussed in more detail in section 2.1.

1.3 Averaged Crocco's Form of the Momentum Equations

By averaging the entropy relation (1.12), one can replace
the pressure gradient and the blade force,fB,by averaged

thermodynamic variables E(a) and E(a)

and by an alternate

blade force function of the enthalpy variations between pres-

sure and suction side, Hirsch and Warzee (1976), Hirsch (1984).
The details of thé calculations can be found in these

references, where the simplifying assumption of an axisymmetric
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entropy has been made, in accordance with the fact that the
friction force Ff is considered, in practical calculations

as an axisymmetric quantity. Note however that this assumption
can easily be removed as seen in section 1. of Hirsch (1984).

One obtains, for steady state conditions, with the relation

PE. = o _5F@ P L5 F (1.29)

where Eh is a body force term expressed as a function of h,

-2 1 w? Ting ng
pfh = - B[(ph n)p ~ (ph n)s] + h"9Vp (1.30)

the following expression for equation (1.16)

EVew @ wb) = 7@ Fs - ST 4 GF (1.31)
with
E — - _ 2 - = = — —_— 3
: DFh = QO r - 20{w xw) + QFf + 0 h (1.32)

When introduced in the density weighted area averaged
momentum equation (1.25) one obtains, with the application

of the continuity equation

- (a) xE(a) = plalgg - zr(al gf + Eh + —%ﬁ(?(S)b) (1.33)
bo
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and the total energy of the density weighted averaged flow,I(a)
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M G

- 2
W(a) 2

2(a) _ g(a) - u
I = bt T
- 1@ awwt o Fla) | gla) (1.34)
2p

The quantity Y(a) is the averaged total energy of the flow,

Z(a)

while I is the total energy of the averaged flow. These

two quantities differ by the average of the kinetic energy

of the fluctuations 5".

2. THE AVERAGED ENERGY EQUATION

The total energy I (or H) plays an essential role in all
the through-flow models, since the through-flow computations
have to rely on the energy relation along the meridional

streamlines. In most, if not all, of the through-flow programs
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based on axisymmetric models, the constancy of the rothalpy

is applied in order to relate quantities in two consecutive
calculation stations. When dealing with the influence of the
non-axisymmetric effects it is essential to be able to esti-

mate their influence on the energy transport and exchange.
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From the third of equations (1.25), one can see that

neither the density averaged total energy 1(3) uhich

satisfies
—=(a) 9 T(a) - - £+ Tun
pwm 3m I = bV(pw I"b) _ (2.1)

nor the total energy of the average flow I(a), which obeys

the equation

_—(a) a_ A(a) —_ - L_b Twrn
pw, m I = bV(pw I"b) =~
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This shows that the mass-averaged enthalpy is conserved

along a streamline defined by the density weighted, area
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average flow (which actually is the mass-flow conserving
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average). Indeed, equation (2.5) can be written as
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Inserting (2.7) into (2.6), one obtains

(m) K (m (2.11)

~ - 3 2 .~ —(a) 3
pwpla) 3o 1 - °¥n  Im

showing that I(m), the total energy of the mass averaged flow

is not rigorously conserved along a density area averaged

streamline.

According to Jennions and Stow (1985), the contribution of
the kinetic energy of the fluctuations, can be as high as 30%

of the total energy of the averaged mean flow.

Non—akisymmetric streamsurfaces - Radial mixing effects

If the blade to blade streamsurfaces are not close to an axi-
symmetric shape, as a consequence of secondary flows, the assump-

tion (2.3) ceases to be strictly valid.

Instead, the mean values appearing in equation (l1.22) are

evaluated as follows, writing, see fiqure 1.2,

w = w_ sin w_ sin (o +0o°
. n o} m (g +0")

(2.12)

£
1]

w w g +0"
m COSO mcos(c c')

introducing hereby the averaged streamsurface slope angle g, and

the "twist” angle o' defined as the difference between the actual

angle ¢ and the mean (axisymmetric) value o

o(r,8,2) = olr,z) + o'(r,8,2) (2.13)
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and for the second term
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These expressions are introduced in the energy equation (1.22).
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Note that the definition (2.15) of I'™

is identical to the
definition (2.3) in the case of axisymmetry. :::-'_\::
The first two terms reduce to the left hand side of (2.6) and

(2.15) becomes, with

: ' = ' T = [ v
pw,Isino (owr) I o' w.I (2.17)
where the energy fluctuations I"' are defined by Ry
1 = 1™ 41w (2.18) o
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N
3 bro! wr' ™ ::'\:::':_::
= a—(b ro' wrIv) + (2.19)

n r Rm

where Rm is the radius of curvature of the average streamline m,

figure 1.2. The derivatives in the direction normal to the axi-

symmetric (averaged) streamsurface %1- appears defined by
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significant than their amplitude. Therefore, the non-axisymmetric g
-~
. . R : .‘.’
energy equation, generalizing equation (2.6) becomes ~
N
=(m) o
= =(a) 31 _ 23 T T o
pbrw, A = an(b ro' wll ') (2.20) o
Note that the right hand side of equation (2.20) represents a ~
N
source term originating from the radial component of the secon- ’,
R
dary velocity field and describes therefore a radial mixing of 4-3
the total energy. 7-
If a gradient assumption is made for the large scale non- :J"-Zt_
axisymmetric fluctuations, one could write -l;‘:
=(m) -
=" - 31 L
V T Tt = e,
] er = € a7 (2.21) S
=4
o
or Sl
R
,;'\':
e
— .i\':s
~ B—I—(m) -’\}\
ol w'Ii" = S
r an P
N
-'.-‘.n
giving rise to a diflution type equation for the energy redis- ':.—::-
Y
\.-\
tribution due to the non-axisymmetric flow field. N
-~ -
v
When the energy equation is written for the total energy S
A S
of the averaged flow I(m) , the radial mixing term has to be added f_-_‘:-_‘«
..,\::
.A\.IA‘
to the right hand side of equation (2.1ll), which becomes ;,.
N
NN
R
e
——————————————— ~'-‘f
—(a) 9 =(m) _ 1 3 “t o - =(a) 3 =(m) .":':
W T I = —— ﬁ(b ro er ) wm = k :ﬁ.‘-f‘
bro -
A
A
(2.22)
e
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The non-constancy of the total energy of the averaged flow,

~

or I

i(a)

(m)' poses a fundamental problem in thfough—flow compu-

tations where the application of some form of total energy .

conservation has to be applied. As mentioned above, the calcu-

lations performed by Jennions and Stow (1385) in the case of

gas turbine nozzle vanes, -indicates that the kinetic energy terms
in equations (2.2) or (2.11) are not negligible. One might won-
der, therefore, what the influence this might have on the evalua-
tion of the right-hand side terms in the radial eguilibrium
equation under the form of equation {(1.33) for instance, Crocco's
form.

Tﬁe following argument tends to support the statement that
the entropy variations, or more precisely the rotary stagnation
pressure gradients, are more important than the enthalpy varia-
tions, at least for low speed flows.

From the isentropic relations between static and absolute

or relative stagnation conditions, one has

T ds = dh - QE
or
dpo
T0 ds = dH - —
Po

where the subscript indicates absolute stagnation conditions.

For rotary, relative conditions, whereby
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Introducing a rotary Mach number, MO

AN
A

w?.u-iﬁ.l..‘ .\..\\
f\\\\\.\-\-

(2.25)

+2
-u
yrT

;2

M LA

3

the coefficients in equation (2.24) become,
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The terms (T$s - $I) in the right-hand side of the momentum

equation (1.33), becomes, independently of the type of averaged

[
P
]
TR
s 4,0
’
]
F i

quantity considered

’
'y
Pl
T,

'. » »
-lcv'/
_5.v .,

E R N
¥ .
'

$p; (2.26)

*+ - > _ 0 > 1 1
TVs VI = ——l—*Z-VI >

Y- y=1_%2,Y/v-1
1l + MO (1 +—2—M0 )
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In low speed compressors the blade exit rotary Mach number

(2.25) should be small. This is in particular the case for the _ﬁﬁ

data of the UTRC experimental axial compressor runs discussed in

A
the next section. When this is the case, the influence of the o

stagnation pressure variations is clearly dominating the through-

flow and the momentum exchange.

One could therefore consider that small errors on the

.
~

evaluation of the enthalpy transport will not affect signifi- v
o

o
5’. .’l ."

cantly the radial equilibrium of the flow.
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3. MOMENTUM AND MASS AVERAGED THROUGH-FLOW EQUATIONS

With density weighted, area averaged variables one can
clearly define a consistent through-flow model where, next
to the blade blockage factor b, interactipn terms due
to the non-axisymmetric secondary stresses ?(a) are describing
the three-dimensional effécts on the average flow.

As mentioned in the introduction, mass averaged variables
such as stagnation pressure and total enthalpy are more repre-
sentative of the physical energy exchange than the corresponding
area averaded variables. In an attempt to formulate a coher-
ent through-flow model for mass-averaged variables we recon-
sider the passage averaged equations (1.20) to (1.22), where
for simplicity the momentum equations are considered in the
absolute frame of reference.

The mass conservation equation and the energy equation

have already been discussed, with the following outcome.

Mass conservation

The natural averaged quantities are the density weighted,

area averaged velocities which lead to the first equation

(1.25), reproduced here

& Gorwl®) + SGorw®) = o (3.1)

or in vector form

Y(obrw @y = o (3.2)

24

La's_arg o - g
L3 SN A et g Sl Gt Sl it ‘r_-_-t:t_v_v'-q—“\ ™ m‘m“w_v___w

t

?ﬂ&!

.
Py

g Rt

. _
'. "".-1. ";l
a ar nd

»

feae!

.....
bl

e
‘{ SRR
LN N

.
!

D
v e a

RS
L

..:" s,
s

{5 ?;
PR

" [
el »

Y O

i A &Y
FﬁQQI-

ﬁ’L

,3'

I XN
: e S
: ) : lg{_ l’:’?-':‘-‘:.i' '

..,

NN e e
S

R4

M\

N
A LA

A
1 P,

o
R AL

f’:;j A

= 0
SO



S
\ ~" e AREE S SO L T e e i ooy A T S cWIE AR g A i - A iy e T TNy - MR o
& Ty ',,,,,F’.,, e T R N TN Ty "

3.1 Momentum Equations--Momentum Averaged Velocity Components

Considering equations (1.21) in the absolute system, it appears
that it is not possible to define a unigque momentum averaged ve-
locity component, since different momentum flux components appear

in the projections of the equation of motion. For instance, in

the radial component, the averaged flux components pvrvr, ;vrwz»

and ovV4Vy occur, while in the axial projection one encounters the

components ov,v and oV, Vv, . This leads to the definition of

r
momentum averaged velocity components such as L
RS
-...b\‘
S
—_— _ — =(r) _ = =(r)=(a) Ay
VLV = vV = o v, v, (3.3) R
N
— 1 S 4
V.V = F f pov_ v _d8 (3.4) o
p B
--\ A‘
oW
s and -~,~,~, 4
- Ry
5 A
e — YA Y
. — =(r) -~ ={(a) =(r) SN,
Cal - = ” .-\'n
E v Vv, v, v, bV, 2 (3.5) A
. .:_..:\;
L:: S ‘-""":
3 T - L
2 VLV, = g [ 0 v, v, de (3.6) ‘}i?
A P A
o e
— .\-.\ *'
¢ One has also e
- . -~
- _ = =(a) =(z)
- VLV, = oV, V.. (3.7)
..
-
N The averaged velocity component Vér) represents the average of v, -
:' '..‘\J-:'
g weighted by the radial momentum ov.. Similarly, from (3.6) and o0
- (ALY
.. ‘- ¢
i (3.7), one can define another averaged radial velocity component 'ié
. )
¢ = . . . . . e
‘ VQZ), representing an average v,, weighted this time by the axial ’
v
’
‘ momentum v, A priori there is no reason to consider these two
i
; 25
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components as equal. From the definition of the velocity fluctua-
tions 3", following eguation (1.5), one can write for instance
for pvrvz,

(a) ;(a)

pVV_ = p vV
Ve e Ve z

z + pvrvz o (3.8)

where ov;V" are the components of the secondary stress tensor

4
?(S) considered in the absolute system.
We define now six different blbckage coefficients, Kij where

i and j represent the components (r,%, z) by

-1 ovivii v
K., = = 4 (3.9)
1] ) ;_(a) ;{a) ;ga)
1 J J

Hence KI% is the ratio between the averaged velocity component
v. weighted with the momentum oV, divided by the corresponding
density weighted, area averaged velocity component ;;a).

From the symmetry between i and j best seen in equation

(3.10) one has also

({3
k7l o= A - ! (3.10)
ij ;ga) ji
1
orxr
K., v = Fla (3.11)
ij i i

This definition of a blockage coefficient with respect t